Skip to main content

Auto correlação de processo médio médio


O primeiro passo no desenvolvimento de um modelo Box-Jenkins é determinar se a série é estacionária e se há alguma estacionalidade significativa que precisa ser modelada. A estacionança pode ser avaliada a partir de um gráfico de seqüência de execução. O gráfico de sequência de execução deve mostrar localização e escala constantes. Também pode ser detectado a partir de um gráfico de autocorrelação. Especificamente, a não-estacionaridade é frequentemente indicada por um gráfico de autocorrelação com decadência muito lenta. Diferindo para alcançar a estacionança Caixa e Jenkins recomendam a abordagem de diferenciação para alcançar a estacionararia. No entanto, ajustar uma curva e subtrair os valores ajustados dos dados originais também pode ser usado no contexto dos modelos Box-Jenkins. Na fase de identificação do modelo, nosso objetivo é detectar a sazonalidade, se existir, e identificar a ordem dos termos médias temporais sazonais e autorregressivos sazonais. Para muitas séries, o período é conhecido e um único termo de sazonalidade é suficiente. Por exemplo, para dados mensais, normalmente incluiríamos um termo sazonal de AR 12 ou um termo sazonal de MA 12. Para os modelos Box-Jenkins, não removemos explicitamente a sazonalidade antes de ajustar o modelo. Em vez disso, incluímos a ordem dos termos sazonais na especificação do modelo para o software de estimação ARIMA. No entanto, pode ser útil aplicar uma diferença sazonal aos dados e regenerar a autocorrelação e os gráficos de autocorrelação parcial. Isso pode ajudar na identificação do modelo do componente não-sazonal do modelo. Em alguns casos, a diferenciação sazonal pode remover a maioria ou todo o efeito da sazonalidade. Identificar p e q Uma vez que a estacionaridade e a sazonalidade foram abordadas, o próximo passo é identificar a ordem (ou seja, (p) e (q)) dos termos médios autorregressivos e móveis. Autocorrelação e parcelamentos de autocorrelação parcial As principais ferramentas para fazer isso são o gráfico de autocorrelação e o gráfico de autocorrelação parcial. O gráfico de autocorrelação da amostra e o gráfico de autocorrelação parcial da amostra são comparados com o comportamento teórico dessas parcelas quando a ordem é conhecida. Ordem de Processo Autoregressivo ((p)) Especificamente, para um processo AR (1), a função de autocorrelação da amostra deve ter uma aparência exponencialmente decrescente. No entanto, os processos AR de ordem superior são muitas vezes uma mistura de componentes sinusoidais exponencialmente decrescentes e amortecidos. Para processos autoregressivos de ordem superior, a autocorrelação da amostra precisa ser complementada com um gráfico de autocorrelação parcial. A autocorrelação parcial de um processo AR ((p)) torna-se zero em lag (p 1) e maior, então examinamos a função de autocorrelação parcial da amostra para ver se há evidência de uma partida de zero. Isso geralmente é determinado ao colocar um intervalo de confiança 95 no gráfico de autocorrelação parcial da amostra (a maioria dos programas de software que geram gráficos de autocorrelação de amostra também irá traçar esse intervalo de confiança). Se o programa de software não gerar a banda de confiança, é aproximadamente (pm 2sqrt), com (N) o tamanho da amostra. Ordem do processo médio móvel ((q)) A função de autocorrelação de um processo MA ((q)) torna-se zero no intervalo (q 1) e maior, então examinamos a função de autocorrelação da amostra para ver onde ela se torna essencialmente zero. Fazemos isso colocando o intervalo de confiança 95 para a função de autocorrelação da amostra no gráfico de autocorrelação da amostra. A maioria dos softwares que podem gerar o gráfico de autocorrelação também podem gerar esse intervalo de confiança. A função de autocorrelação parcial da amostra geralmente não é útil para identificar a ordem do processo de média móvel. Forma da função de autocorrelação A tabela a seguir resume como usamos a função de autocorrelação da amostra para a identificação do modelo. Aplicação: Verifique os lotes de autocorrelação de aleatoriedade (Box e Jenkins, pp. 28-32) são uma ferramenta comumente usada para verificar a aleatoriedade em um conjunto de dados. Essa aleatoriedade é verificada pela computação de autocorrelações para valores de dados em diferentes intervalos de tempo. Se aleatório, tais autocorrelações devem estar próximas de zero para separações de tempo e intervalo. Se não aleatório, uma ou mais das autocorrelações serão significativamente diferentes de zero. Além disso, os gráficos de autocorrelação são usados ​​na fase de identificação do modelo para os modelos de séries temporais médias autorregressivas Box-Jenkins. Autocorrelação é apenas uma medida da aleatoriedade Observe que não corretamente não significa aleatoriamente. Os dados que possuem autocorrelação significativa não são aleatórios. No entanto, dados que não mostram autocorrelação significativa ainda podem exibir aleatoriedade de outras maneiras. A autocorrelação é apenas uma medida de aleatoriedade. No contexto da validação do modelo (que é o tipo primário de aleatoriedade que discutimos no Manual), verificar a autocorrelação é tipicamente um teste suficiente de aleatoriedade, uma vez que os resíduos de modelos de montagem pobres tendem a exibir aleatoriedade não sutil. No entanto, algumas aplicações exigem uma determinação mais rigorosa da aleatoriedade. Nesses casos, uma série de testes, que podem incluir a verificação da autocorrelação, são aplicados, uma vez que os dados podem ser não-aleatórios de muitas formas diferentes e muitas vezes sutis. Um exemplo de onde uma verificação mais rigorosa da aleatoriedade é necessária seria testar geradores de números aleatórios. Lote de amostra: as correções automáticas devem ser próximas de zero para aleatoriedade. Tal não é o caso neste exemplo e, portanto, a suposição de aleatoriedade falha. Esse gráfico de autocorrelação de amostra mostra que a série de tempo não é aleatória, mas sim um alto grau de autocorrelação entre observações adjacentes e adjacentes. Definição: r (h) versus h Os gráficos de autocorrelação são formados por eixo vertical: coeficiente de autocorrelação onde C h é a função de autocovariância e C 0 é a função de variância Observe que R h está entre -1 e 1. Observe que algumas fontes podem usar o Seguinte fórmula para a função de autocovariância Embora esta definição tenha menor preconceito, a formulação (1 N) possui algumas propriedades estatísticas desejáveis ​​e é a forma mais utilizada na literatura estatística. Veja as páginas 20 e 49-50 em Chatfield para obter detalhes. Eixo horizontal: intervalo de tempo h (h 1, 2, 3.) A linha acima também contém várias linhas de referência horizontais. A linha do meio está em zero. As outras quatro linhas são 95 e 99 bandas de confiança. Observe que existem duas fórmulas distintas para gerar as bandas de confiança. Se o gráfico de autocorrelação estiver sendo usado para testar aleatoriedade (ou seja, não há dependência de tempo nos dados), recomenda-se a seguinte fórmula: onde N é o tamanho da amostra, z é a função de distribuição cumulativa da distribuição normal padrão e (alfa ) É o nível de significância. Nesse caso, as bandas de confiança possuem uma largura fixa que depende do tamanho da amostra. Esta é a fórmula que foi usada para gerar as bandas de confiança no gráfico acima. Os gráficos de autocorrelação também são usados ​​no estágio de identificação do modelo para montagem de modelos ARIMA. Neste caso, um modelo de média móvel é assumido para os dados e as seguintes faixas de confiança devem ser geradas: onde k é o atraso, N é o tamanho da amostra, z é a função de distribuição cumulativa da distribuição normal padrão e (alfa) é O nível de significância. Nesse caso, as bandas de confiança aumentam à medida que o atraso aumenta. O gráfico de autocorrelação pode fornecer respostas para as seguintes questões: Os dados são aleatórios É uma observação relacionada a uma observação adjacente É uma observação relacionada a uma observação duas vezes removida (etc.) É a série de tempo observada ruído branco É a série temporal observada sinusoidal A série temporal observada é autorregressiva. O que é um modelo apropriado para as séries temporais observadas. O modelo é válido e suficiente. A ssqrt da fórmula é válida. Importância: Garantir a validade das conclusões de engenharia. A aleatoriedade (juntamente com modelo fixo, variação fixa e distribuição fixa) é Um dos quatro pressupostos que geralmente dependem de todos os processos de medição. O pressuposto de aleatoriedade é extremamente importante para os seguintes três motivos: a maioria dos testes estatísticos padrão depende da aleatoriedade. A validade das conclusões do teste está diretamente ligada à validade do pressuposto de aleatoriedade. Muitas fórmulas estatísticas comumente usadas dependem da suposição de aleatoriedade, sendo a fórmula mais comum a fórmula para determinar o desvio padrão da amostra: onde s é o desvio padrão dos dados. Embora fortemente utilizados, os resultados da utilização desta fórmula não têm valor a menos que a suposição de aleatoriedade se mantenha. Para dados univariados, o modelo padrão é Se os dados não são aleatórios, este modelo é incorreto e inválido, e as estimativas para os parâmetros (como a constante) tornam-se absurdas e inválidas. Em suma, se o analista não verificar a aleatoriedade, a validade de muitas das conclusões estatísticas torna-se suspeita. O gráfico de autocorrelação é uma excelente maneira de verificar essa aleatoriedade.2.1 Modelos médios em movimento (modelos MA) Os modelos de séries temporais conhecidos como modelos ARIMA podem incluir termos autorregressivos e os termos médios móveis. Na semana 1, aprendemos um termo autorregressivo em um modelo de séries temporais para a variável x t é um valor remanescente de x t. Por exemplo, um termo autorregressivo de lag 1 é x t-1 (multiplicado por um coeficiente). Esta lição define os termos médios móveis. Um termo médio móvel em um modelo de séries temporais é um erro passado (multiplicado por um coeficiente). Deixe (wt overset N (0, sigma2w)), o que significa que o w t é idêntico, distribuído independentemente, cada um com uma distribuição normal com média 0 e a mesma variância. O modelo de média móvel de 1ª ordem, denotado por MA (1) é (xt mu wt theta1w) O modelo de média móvel de 2ª ordem, denotado por MA (2) é (xt mu wt theta1w theta2w) O modelo de média móvel da ordem q , Denotado por MA (q) é (xt mu wt theta1w theta2w dots thetaqw) Nota. Muitos livros didáticos e programas de software definem o modelo com sinais negativos antes dos termos. Isso não altera as propriedades teóricas gerais do modelo, embora ele flip os signos algébricos de valores de coeficientes estimados e termos (desactuados) em fórmulas para ACFs e variâncias. Você precisa verificar seu software para verificar se os sinais negativos ou positivos foram usados ​​para escrever corretamente o modelo estimado. R usa sinais positivos em seu modelo subjacente, como fazemos aqui. Propriedades teóricas de uma série de tempo com um modelo MA (1) Observe que o único valor diferente de zero na ACF teórica é para o atraso 1. Todas as outras autocorrelações são 0. Assim, uma amostra ACF com autocorrelação significativa apenas no intervalo 1 é um indicador de um possível modelo MA (1). Para estudantes interessados, as provas dessas propriedades são um apêndice para este folheto. Exemplo 1 Suponha que um modelo de MA (1) seja x t 10 w t .7 w t-1. Onde (com o excesso de N (0,1)). Assim, o coeficiente 1 0,7. O ACF teórico é dado por um gráfico deste ACF segue. O enredo que acabamos de mostrar é o ACF teórico para um MA (1) com 1 0,7. Na prática, uma amostra geralmente não fornece um padrão tão claro. Usando R, simulamos n 100 valores de amostra usando o modelo x t 10 w t .7 w t-1 onde w t iid N (0,1). Para esta simulação, segue-se um gráfico de séries temporais dos dados da amostra. Não podemos dizer muito dessa trama. A amostra ACF para os dados simulados segue. Vemos um pico no intervalo 1 seguido de valores geralmente não significativos para atrasos após 1. Observe que o ACF de amostra não corresponde ao padrão teórico da MA subjacente (1), que é que todas as autocorrelações por atrasos após 1 serão 0 . Uma amostra diferente teria uma ACF de amostra ligeiramente diferente mostrada abaixo, mas provavelmente teria os mesmos recursos amplos. Propriedades terapêuticas de uma série de tempo com um modelo MA (2) Para o modelo MA (2), as propriedades teóricas são as seguintes: Observe que os únicos valores não nulos no ACF teórico são para atrasos 1 e 2. As autocorrelações para atrasos superiores são 0 . Assim, uma amostra de ACF com autocorrelações significativas nos intervalos 1 e 2, mas as autocorrelações não significativas para atrasos maiores indicam um possível modelo de MA (2). Iid N (0,1). Os coeficientes são de 1 0,5 e 2 0,3. Uma vez que este é um MA (2), o ACF teórico terá valores diferentes de zero apenas nos intervalos 1 e 2. Os valores das duas autocorrelações não-zero são A Um gráfico do ACF teórico segue. Como quase sempre é o caso, os dados da amostra não se comportam tão perfeitamente quanto a teoria. Nós simulamos n 150 valores de amostra para o modelo x t 10 w t .5 w t-1 .3 w t-2. Onde w t iid N (0,1). A série de séries temporais dos dados segue. Tal como acontece com a série de séries temporais para os dados da amostra MA (1), você não pode contar muito com isso. A amostra ACF para os dados simulados segue. O padrão é típico para situações em que um modelo de MA (2) pode ser útil. Existem dois picos estatisticamente significativos nos intervalos 1 e 2 seguidos de valores não significativos para outros atrasos. Observe que, devido ao erro de amostragem, a amostra ACF não corresponde exatamente ao padrão teórico. ACF para General MA (q) Modelos Uma propriedade de modelos de MA (q) em geral é que existem autocorrelações diferentes de zero para os primeiros intervalos de q e autocorrelações 0 para todos os atrasos gt q. Não singularidade de conexão entre valores de 1 e (rho1) em MA (1) Modelo. No modelo MA (1), para qualquer valor de 1. O recíproco 1 1 dá o mesmo valor para Como exemplo, use 0,5 para 1. E depois use 1 (0,5) 2 para 1. Você obterá (rho1) 0.4 em ambos os casos. Para satisfazer uma restrição teórica chamada invertibilidade. Nós restringimos os modelos de MA (1) para ter valores com valor absoluto inferior a 1. No exemplo que acabamos de dar, 1 0.5 será um valor de parâmetro permitido, enquanto que 1 10.5 2 não irá. Invertibilidade de modelos de MA Um modelo de MA é considerado inversível se for algébricamente equivalente a um modelo de AR de ordem infinita convergente. Ao convergir, queremos dizer que os coeficientes de AR diminuem para 0, enquanto nos movemos para trás no tempo. Invertibilidade é uma restrição programada em software de série temporal usado para estimar os coeficientes de modelos com termos MA. Não é algo que buscamos na análise de dados. Informações adicionais sobre a restrição de invertibilidade para modelos MA (1) são apresentadas no apêndice. Nota de teoria avançada. Para um modelo MA (q) com um ACF especificado, existe apenas um modelo inversível. A condição necessária para a invertibilidade é que os coeficientes possuem valores tais que a equação 1- 1 y-. - q e q 0 possui soluções para y que se encontram fora do círculo da unidade. Código R para os Exemplos No Exemplo 1, traçamos o ACF teórico do modelo x t 10 w t. 7w t-1. E depois simulou n 150 valores desse modelo e traçou as séries temporais da amostra e a amostra ACF para os dados simulados. Os comandos R utilizados para traçar o ACF teórico foram: acfma1ARMAacf (mac (0,7), lag. max10) 10 lags de ACF para MA (1) com theta1 0,7 lags0: 10 cria uma variável chamada atrasos que varia de 0 a 10. trama (Lag, acfma1, xlimc (1,10), ylabr, typeh, ACF principal para MA (1) com theta1 0,7) abline (h0) adiciona um eixo horizontal ao gráfico O primeiro comando determina o ACF e o armazena em um objeto Nomeado acfma1 (nossa escolha de nome). O comando de parcela (o comando 3) representa atrasos em relação aos valores ACF para os atrasos 1 a 10. O parâmetro ylab rotula o eixo y e o parâmetro principal coloca um título no gráfico. Para ver os valores numéricos do ACF, use simplesmente o comando acfma1. A simulação e os gráficos foram feitos com os seguintes comandos. Xcarima. sim (n150, list (mac (0.7))) Simula n 150 valores de MA (1) xxc10 acrescenta 10 para fazer a média 10. Padrões de simulação significa 0. plot (x, typeb, mainSimulated MA (1) dados) Acf (x, xlimc (1,10), mainACF para dados de amostra simulados) No Exemplo 2, traçamos o ACF teórico do modelo xt 10 wt .5 w t-1 .3 w t-2. E depois simulou n 150 valores desse modelo e traçou as séries temporais da amostra e a amostra ACF para os dados simulados. Os comandos R utilizados foram acfma2ARMAacf (mac (0.5,0.3), lag. max10) acfma2 lags0: 10 plot (lags, acfma2, xlimc (1,10), ylabr, typeh, ACF principal para MA (2) com theta1 0,5, Theta20.3) abline (h0) xcarima. sim (n150, list (mac (0.5, 0.3))) xxc10 plot (x, typeb, principal Simulated MA (2) Series) acf (x, xlimc (1,10), MainACF para dados simulados de MA (2) Apêndice: Prova de propriedades de MA (1) Para estudantes interessados, aqui estão as provas para propriedades teóricas do modelo MA (1). Variance: (texto (texto) (mu wt theta1 w) Texto de 0 texto (wt) (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Quando h 1, a expressão anterior 1 w 2. Para qualquer h 2, a expressão anterior 0 . A razão é que, por definição de independência do peso. E (w k w j) 0 para qualquer k j. Além disso, porque o w t tem 0, E (w j w j) E (w j 2) w 2. Para uma série de tempo, aplique este resultado para obter o ACF fornecido acima. Um modelo de MA reversível é aquele que pode ser escrito como um modelo de AR de ordem infinita que converge para que os coeficientes de AR convergem para 0 à medida que nos movemos infinitamente de volta no tempo. Bem, demonstre invertibilidade para o modelo MA (1). Em seguida, substituímos a relação (2) para w t-1 na equação (1) (3) (zt wt theta1 (z - theta1w) wt theta1z - theta2w) No momento t-2. A equação (2) torna-se então substituímos a relação (4) para w t-2 na equação (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) Se continuássemos ( Infinitamente), obteríamos o modelo de AR de ordem infinita (zt wt theta1 z - theta21z theta31z - theta41z dots) Note, no entanto, que se 1 1, os coeficientes que multiplicam os atrasos de z aumentarão (infinitamente) de tamanho à medida que avançarmos Tempo. Para evitar isso, precisamos de 1 lt1. Esta é a condição para um modelo de MA reversível (1). Modelo de ordem infinita MA Na semana 3, veja que um modelo de AR (1) pode ser convertido em um modelo de MA de ordem infinita: (xt - mu wt phi1w phi21w dots phik1 w dots sum phij1w) Este somatório de termos de ruído branco passados ​​é conhecido Como a representação causal de um AR (1). Em outras palavras, x t é um tipo especial de MA com um número infinito de termos que retornam no tempo. Isso é chamado de uma ordem infinita MA ou MA (). Uma ordem finita MA é uma ordem infinita AR e qualquer ordem finita AR é uma ordem infinita MA. Recorde na Semana 1, observamos que um requisito para um AR estacionário (1) é aquele 1 lt1. Vamos calcular o Var (x t) usando a representação causal. Este último passo usa um fato básico sobre séries geométricas que requerem (phi1lt1) caso contrário a série diverge. Navegação

Comments

Popular posts from this blog

Forex trading planner pad

Como construir um plano de negociação de quatro pontos A falta de planejamento está planejando falhar, cada comerciante precisa de um plano de negociação. Este artigo abrange o que, como, quando e por que isso precisa ser respondido no plano. As estratégias da amostra são referidas para tipos múltiplos do comerciante na seção para o lsquohow. rsquo Os planos negociando são muito como o seguro: Os donrsquot dos povos querem geralmente até que theyrsquove já enfrentaram uma catástrofe. Mas depois dessa catástrofe talvez tenha sido uma grande perda em uma única posição, ou talvez ainda pior, um chamado de margem de um comércio ruim, o comerciante vai muitas vezes reconhecer que algo precisa ser feito. Mas independentemente de como se chega lá, apenas o fato de que eles chegam ao destino de perceber que um plano de negociação não é apenas uma preferência, mas muitas vezes uma necessidade é geralmente um desenvolvimento positivo na carreira do comerciante. O próximo dilema que se segue é ge...

Regra média móvel dupla

A OANDA usa cookies para tornar nossos sites fáceis de usar e personalizados para nossos visitantes. Os cookies não podem ser usados ​​para identificá-lo pessoalmente. Ao visitar o nosso site, você aceita o uso de cookies da OANDA8217 de acordo com nossa Política de Privacidade. Para bloquear, excluir ou gerenciar cookies, visite aboutcookies. org. A restrição de cookies impedirá que você se beneficie de algumas das funcionalidades do nosso site. Baixe o nosso Mobile Apps Select conta: ampltiframe src4489469.fls. doubleclick. netactivityisrc4489469typenewsi0catoanda0u1fxtradeiddclatdcrdidtagforchilddirectedtreatmentord1num1 mcesrc4489469.fls. doubleclick. netactivityisrc4489469typenewsi0catoanda0u1fxtradeiddclatdcrdidtagforchilddirectedtreatmentord1num1 width1 height1 frameborder0 styledisplay: nenhum mcestyledisplay: Lição 1 noneampgtampltiframeampgt: Médias Móveis Interpretação Movendo Sinais média móvel médias fornecer dados para a direção geral e impulso De um par de moedas. Como a...

O que mover média para usar para dia negociação

Como usar a média móvel de 10 dias para maximizar seus lucros de negociação. Os comerciantes de confiança confiam em um arsenal diverso de indicadores técnicos ao analisar estoques, e há literalmente centenas de indicadores a escolher de Mas como é um comerciante novo suposto saber que indicadores São mais confiáveis ​​Decidir que os indicadores técnicos para usar pode ser francamente um pouco esmagadora, mas não tem que ser nem deve ser. Enquanto aprendendo a dominar o nosso sistema vencedor para swing negociação de ações e ETFs nos primeiros anos, nós testamos um plethora De indicadores técnicos Nossa conclusão foi que a maioria dos indicadores técnicos servido seu propósito de aumentar as chances de um comércio de ações rentável No entanto, descobrimos rapidamente que o uso de muitos indicadores só levou a paralisia de análise Como tal, agora evitamos este problema simplesmente Concentrando-se nos fundamentos experimentados e verdadeiros do preço de negociação técnico, volume e níve...